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Abstract—This paper presents a method for the design of
lattice wave digital filters (LWDFs) with an approximately linear
phase response. A recently developed algorithm for the design
of approximately linear phase allpass filters was utilized in
combination with the LWDF structure, to synthesize frequency
selective filters with a high phase response flatness. An iterative
optimization method to generate such an LWDF for a given
set of frequency response constraints was implemented and
integrated into an open source LWDF design toolbox to allow
an outreach to a broader audience. Additionally, the generated
floating point LWDF coefficients can be quantized as multiplier-
free signed digits by solving a nonlinear optimization problem.
The design toolbox finds the coefficient representation requiring
the minimum number of additions and/or subtractions, while still
satisfying a given set of frequency response constraints. The re-
sults show the effectiveness of the filter design method compared
to standard designs such as Butterworth, Tschebyscheff or Cauer
and they highlight the differences to another existing linear phase
method of the toolbox. A significant improvement can be seen in
a comparison between the signed digit quantization compared to
simple coefficient rounding.

Index Terms—design method, linear phase filters, lattice wave
digital filter, LWDF, signed digit quantization

I. INTRODUCTION

The lattice wave digital filter (LWDF) is a specific im-
plementation structure of an infinite impulse response (IIR)
filter. It poses numerous advantages for implementation in
hardware such as low coefficient wordlength requirements, low
roundoff noise level and no parasitic oscillations, while being
highly modular. These properties make the LWDF a favorable
choice for very large scale integration (VLSI) [1]. Standard
IIR filters exhibit a nonlinear phase response, which makes
them unsuited for applications which rely on the shape of the
signal envelope. LWDFs however, can be designed to reduce
this nonlinearity to a reasonable amount. A new approach to
the design problem of reducing this nonlinearity was proposed
in [2]. It utilizes an allpass filter design algorithm that max-
imizes the filters phase response flatness in a specified band,
while obtaining an equiripple phase response in the remaining
band(s) by applying the Remez exchange algorithm.

The intention of this work is to make this design method
conveniently accessible for practical use, by implementing
the algorithm into an open source design toolbox that lets
the user generate an LWDF with standard design methods
like Butterworth, Tschebyscheff or Cauer, for a given set of
filter constraints [3]. This toolbox was already extended by

another method for achieving approximately constant group
delay [4], which will be used for a comparison with the new
implementation. Furthermore, the quantization behavior of the
resulting filters will be analyzed for a simple method i.e. coef-
ficient rounding, and a more sophisticated method which uses
a signed digit representation for the LWDF coefficients. An
algorithm for finding the optimum representation with respect
to the number of necessary additions and/or subtractions in
hardware, for a given set of frequency response constraints,
is explained in [5] and will also be made publicly available
through the toolbox.

The general principle of the LWDF structure is to create a
sum from the output of two allpass filters which ideally exhibit
a phase relation of 0 in the passband and ±π in the stopband.
A division by 2 is done at the end to ensure that the resulting
magnitude response is ≤ 1. The resulting system function can
be described as

H(z) =
1

2
[A0(z) +A1(z)] , (1)

where A0(z) and A1(z) are the allpass filter system functions.
To achieve a low roundoff noise level, the individual allpass
filters are further divided into a cascaded structure consisting
of an interconnection of two port adaptors and delay elements.
These can be written as

H1,2(z) =

M∏
i=1

H(i)(z) (2)

where H(i)(z) is either a first order section

H(i)(z) =
−γi + z−1

1− γi · z−1
(3)

which is fully defined by the coefficient γi, or a second order
section

H(i)(z) =
−γi0 + γi1(γi0 − 1)z−1 + z−2

1 + γi1(γi0 − 1)z−1 − γi0z−2
, (4)

defined by γi0 and γi1. It can be noted that the linear phase
design which will be addressed in the following section uses
only delay elements in the lower branch. An example filter
with this kind of structure is illustrated in figure 1.
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Fig. 1. A toolbox visualization example of a fifth order lowpass LWDF
structure.

II. LINEAR PHASE LWDF DESIGN

The design method featured in this paper relies on the work
of Zhang [2], [6], [7]. It requires putting initial constraints
on the filter’s phase response degree of flatness K at one or
multiple frequency points ωp, while using the remaining de-
grees of freedom for an equiripple phase response in specified
band(s). Previously existing methods did not permit the design
of allpass filters with these two properties combined. For an
allpass filter with the general transfer function

A(z) = z−N

N∑
n=0

anz
n

N∑
n=0

anz
−n

, (5)

the definition for the degree of flatness K (∈ Z) at a frequency
point ωp can be expressed as

∂rΘ(ω)

∂ωr

∣∣∣∣
ω=ωp

=
∂rΘd(ω)

∂ωr

∣∣∣∣
ω=ωp

, r = 0, 1, ...,K − 1 (6)

where Θd and Θ are the desired and actual phase responses. By
substitution of the general phase response of an allpass filter,
and assuming a linear desired phase response, these conditions
can also be stated as

N∑
n=0

(n− N−τ
2 )r sin{(n− N−τ

2 )ωp}an = 0 for even r,

N∑
n=0

(n− N−τ
2 )r cos{(n− N−τ

2 )ωp}an = 0 for odd r.

(7)
It can be seen that the equation is always true for odd r if
ωp ∈ {0, π}. It follows that that the number of conditions is

L =

{
bK2 c for wp ∈ {0, π},
K otherwise.

(8)

To generate meaningful results, L needs to be less than the
filter order N . Therefore the remaining degree of freedom N−
L + 1 can be used for the equiripple phase response in the
specified band(s) by applying the Remez exchange algorithm.

The filter coefficients an can then be obtained by solving a
generalized eigenvalue problem in the form of

PA = δQA, (9)

where A = [a0, a1, ..., aN ]
T , and the elements of the matrices

P and Q are given by

Pij =



∂i sin{(n− N
2 )ω − Θd(ω)

2 }
∂ωi

∣∣∣∣∣
ω=ωp

for i = 0, 1, ..., L− 1,

sin{(j − N
2 ω(i−L) −

Θd(ω(i−L))

2 }
for i = L,L+ 1, ..., N,

Qij =


0 for i = 0, 1, ..., L− 1,

(−1)i−L cos{(j − N
2 ω(i−L) −

Θd(ω(i−L))

2 }
for i = L,L+ 1, ..., N.

(10)
A more detailed derivation can be found in the original paper
by Zhang [2].

By using this design method in combination with an LWDF
structure, frequency selective filters can be generated which
exhibit maximal flatness in their passband(s) and equiripple in
their stopband(s) phase response. To obtain a filter that satisfies
given design constraints in the form of passband and stopband
magnitude response tolerances, an iterative procedure can be
used. At first, a coefficient set is generated with the lowest
possible order (N = 2) and the highest corresponding degree
of flatness

K =

{
2N − 1, for 2N − 1 ≤ 15,

15 otherwise.
(11)

K ≤ 15 was found to be a reasonable upper limit during
the implementation of the algorithm. If the resulting filter
does not satisfy the requirements, K is decremented and the
design method is tried again. If the requirements are still not
satisfied at the lowest reasonable value K = 3, N can be
incremented and again all possible K are tested beginning with
the highest. This process is repeated until a solution is found or
the reasonable upper limit for N is reached. This upper limit
was empirically determined to be N = 20. For N > 20, the
algorithm generates filters with poles in the passband, which
makes it impossible to fulfill a given ripple tolerance.

III. SIGNED DIGIT QUANTIZATION

A resource efficient way of implementing this LWDF design
in hardware can be done by following the work of Kaakinen
and Saramäki [5]. They propose implementing the multiplica-
tion via a sequence of shift and add and/or subtract operations,
instead of using costly general multipliers. For this purpose,
it is desireable to express the coefficient values in the form of

R∑
r=1

xr2
−Pr , (12)

where xr ∈ {−1, 0, 1} and Pr ∈ N.



Here, the difference to the classical canonical signed digit
(CSD) representation is the missing property that adjacent
CSD digits are never both non-zero. This constraint leads to
a bijective conversion between a 2’s complement number and
the corresponding CSD representation. Therefore, the signed
digit approach leads to a non-injective conversion from 2’s
complement to signed digits, but potentially decreases the
necessary number of non-zero digits.

Thus the quantization goal is to find the optimum signed
digit representation for a given set of floating point coeffi-
cients, with respect to the implementation cost. This means
that R needs to be as small as possible. Then, a solution needs
to be found for this minimum R with the smallest maximum
Pr.

This optimization can be done in two steps. First, for every
allpass denominator coefficient, the minimum and maximum
possible values that still satisfy the constraints, need to be
found while reoptimizing the others. The constraints are com-
posed of three parts. First, magnitude response passband and
stopband tolerances

1− δp ≤ |H(ejω)| ≤ 1 for ω ∈ Ωp

|H(ejω)| ≤ δs for ω ∈ Ωs,
(13)

where Ωp and Ωs are passband and stopband regions and
δp and δs the respective tolerances. Second, phase response
linearity tolerance

| argH(ejω)− τω| ≤ ∆ for ω ∈ Ωp, (14)

where τ is the ideal group delay. The last constraint is keeping
the order of the filters poles after their radii intact. This
problem can be solved by using any nonlinear problem solver.

The next step is then to find the optimum signed digit
representation inside these boundaries, according to the afore-
mentioned criteria. This can be done in an exhaustive manner,
by testing all possible combinations beginning with the least
cost. R = 1 and maximum Pr = 1, and incrementing first the
maximum Pr and then R if the constraints are not satisfied.
This approach can however, lead to an unfeasible runtime for
some filter constraints.

IV. LWDF DESIGN TOOLBOX

The Delft University of Technology provides an open source
toolbox named Wave Digital Filter Designer [3], which focuses
solely on the design of WDFs and LWDFs. It was extended
by the work of Zeintl et al. [4] with a different approach for
the design of approximately linear phase LWDFs. This made
it an ideal candidate for integration of the practical part of
this work, because it ensured an easy way of comparing the
results, with existing methods.

Figure 2 shows the general design flow of the toolbox,
where the proposed changes are drawn with dashed lines.
It allows generation of the four general filter types lowpass,
highpass, bandpass and stopband. The initial version from
TU Delft includes the standard approximation methods But-
terworth, Chebyshev, Cauer and the Sharpe/Vlach method
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Fig. 2. Current design flow of TU Delfts Toolbox with additions from Zeintl
[4] (solid) and proposed changes (dashed).

for a more direct possibility to design passband and stop-
band filters. The Collocation/Galerkin methods are the linear
phase approximations that where added in [4]. The filters can
be designed as time-continuous or time-discrete, where the
standard methods are transformed from the continuous time
domain via the bilinear transformation. The resulting filters’
frequency response can be displayed, as well as the actual
WDF parameters for two and three port adaptor networks.
The parameters of the two port adaptor network can also
be quantized with the standard methods like rounding and
truncation. For a time-continuous design, a ladder network
consisting of resistors, capacitors and inductors can also be
created.

V. RESULTS

As a result of this work, the approximately linear phase
LWDF design method and the signed digit quantization al-
gorithm were both integrated into the toolbox from [3] to be
publicly available. A comparison between a standard Butter-
worth design, the Collocation method of [4] and the newly
implemented maximal flat method can be seen in figure 3
and 4. The filter order was chosen such that their hardware
realization as LWDF would lead to M = 9 multipliers. For the
maximal flat design algorithm, passband and stopband where
defined as Ωp = [0, 0.25] and Ωs = [0.35, 0.5] with magnitude
response tolerances δp = 0.3 dB and δs = 30 dB. The cutoff
frequencies for the other two algorithms where chosen to
satisfy the same criteria. It can be seen in figure 3 that the
Collocation and maximal flat methods produce approximately
the same magnitude response, with the Collocation method
displaying a slight passband ripple. The maximal flat method
on the other hand shows a faster roll-off near the end of the
passband, while the Butterworth method exhibits the steepest
roll-off of all three methods. The group delay plot in figure 4a
shows the impracticality of the Butterworth method, when low
group delay variation is needed. The main difference between
the Collocation and the maximal flat filters can be seen in
figure 4b, where the group delay plot is magnified in the
passband. Here, the Collocation design still shows a small



TABLE I
TABLE OF DIFFERENT QUANTIZATIONS FOR LWDF γ COEFFICIENTS.

Floating-Point
(Decimal)

Rounded
(Binary string)

Signed Digits
(Trinary string)

γ1 −0.078139174739667 1.111 .00+0
γ2 0.494223541933836 0.100 .0+0+
γ3 −0.119310280159436 1.111 .0000
γ4 0.357791830705940 0.011 .00++
γ5 −0.216078536280463 1.110 .00-0
γ6 −0.688360259211653 1.010 .-000
γ7 −0.629091302981285 1.011 .--00
γ8 −0.124584853128215 1.111 .0000

Adders/Subtractors 23 9

ripple, whereas the maximal flat design is perfectly flat. The
cost of this flatness can be seen near the end of the passband,
where the group delay of the maximal flat design starts to rise
earlier than that of the Collocation design.

The signed digit quantization algorithm was compared with
a standard coefficient rounding method for a maximal flat
design. The filter was designed for Ωp = [0, 0.25] and
Ωs = [0.35, 0.5], with δp = 1 dB and δs = 50 dB. The
quantization was then optimized for Ωp,q = [0, 0.20] and
Ωs,q = Ωs, with δp,q = δp, δs,q = 40 dB, and ∆τq = 0.5.
These constraints are satisfied for a representation with a
maximum Pr = 4 and a maximum R = 2 for all coefficients.
Table I shows the floating point coefficients generated by the
design algorithm, the optimized signed digit representation and
the rounded two’s complement representation to a comparable
number of bits. The last line of the table shows the number of
necessary adders and subtractors that would be needed for an
implementation in hardware via shifts and adds or subtracts.
Only the adders and subtractors needed for multiplication
with the γ coefficents are counted for this comparison. For
a realization of the filters, additional structural adders would
also be needed. These are for both coefficient representations
the same and therefore not included in the comparison. In
this regard, the signed digit quantization shows a significant
improvement in comparison to the rounding. It also has to be
noted that the magnitude response of the signed digit repre-
sentation behaves drastically better over the whole bandwidth
than the rounded version. In this particular case even almost
as good as the floating point version, while only adding the
previously defined ∆τq ≤ 0.5 to the group delay in most of
the original passband.

VI. CONCLUSION

In this paper, a recently developed method for the design of
approximately linear phase response LWDFs was implemented
and integrated into an open source toolbox. The implemen-
tation shows an improvement of group delay flatness in the
filters passband, when compared to designs of the existing
Collocation and Butterworth methods with equal realization
effort. Furthermore, a quantization method that minimizes
necessary hardware resources by utilizing the signed digit
representation was implemented. The filters stopband atten-
uation and group delay variation degrade less when using

this method, than from a simple rounding of its coefficients.
This stems from the use of optimization constraints for these
properties. Due to the nature of the signed digit optimization,
the necessary hardware resources for a realization of the
multiplications in the filter structure as shift and add or subtract
operation are also typically lower compared to the rounding
to a two’s complement of similar bit width. The downside of
this implementation is a typically high runtime. Depending on
the chosen constraints, this can become unpractical due to the
exhaustive part of the optimization. Further studies could be
directed to the search for a heuristic approach to speed up this
process.
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Fig. 3. Comparison of magnitude responses for lowpass Butterworth, Collocation and maximal flat designs with equal implementation effort (multiplier count
M = 9) full spectrum (a) and zoomed in on the passband (b).
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Fig. 4. Comparison of group delays zoomed in on the passband for lowpass Butterworth, Collocation and maximal flat designs with equal implementation
effort (multiplier count M = 9) full spectrum (a) and zoomed in on the passband (b).


